Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005785

RESUMEN

Phosphorus (P) is a major limiting factor for legume and symbiotic nitrogen fixation (SNF). Although overall adaptations of legumes to P supplementation have been extensively studied in connection with inorganic P, little information is currently available regarding nodulation or SNF responses to organic P (Po) in hydroponics. We investigated the mineral and carbon metabolism of Po-induced nodules of two contrasting faba bean varieties grown hydroponically under inorganic P (Pi), viz., in P-deficient (2 µM KH2PO4, -Pi), sufficient-P (200 µM KH2PO4, +Pi), and phytic acid (200 µM, Po) conditions, and were inoculated with Rhizobium leguminosarum bv. viciae 3841 and grown for 30 days. The results consistently reveal similar growth and biomass partitioning patterns between +Pi and Po, with both varying substantially from -Pi. In comparison, +Pi and Po observed equivalent accumulations of overall elemental P concentrations, with both increasing by 114 and 119%, respectively, relative to -Pi. A principal component analysis on metabolites showed a clear separation of the -Pi treatment from the others, with +Pi and Po correlating closely together, highlighting the nonsignificant differences between them. Additionally, the δ15N abundance of shoots, roots, and nodules was not significantly different between treatments and varieties and exhibited negative δ15N signatures for all tissues. Our study provides a novel perspective on mineral and carbon metabolism and their regulation of the growth, functioning, and reprogramming of nodules upon phytate supply.

2.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835138

RESUMEN

Sulfur (S) deprivation leads to abiotic stress in plants. This can have a significant impact on membrane lipids, illustrated by a change in either the lipid class and/or the fatty acid distribution. Three different levels of S (deprivation, adequate, and excess) in the form of potassium sulfate were used to identify individual thylakoid membrane lipids, which might act as markers in S nutrition (especially under stress conditions). The thylakoid membrane consists of the three glycolipid classes: monogalactosyl- (MGDG), digalactosyl- (DGDG), and sulfoquinovosyl diacylglycerols (SQDG). All of them have two fatty acids linked, differing in chain length and degree of saturation. LC-ESI-MS/MS served as a powerful method to identify trends in the change in individual lipids and to understand strategies of the plant responding to stress. Being a good model plant, but also one of the most important fresh-cut vegetables in the world, lettuce (Lactuca sativa L.) has already been shown to respond significantly to different states of sulfur supply. The results showed a transformation of the glycolipids in lettuce plants and trends towards a higher degree of saturation of the lipids and an increased level of oxidized SQDG under S-limiting conditions. Changes in individual MGDG, DGDG, and oxidized SQDG were associated to S-related stress for the first time. Promisingly, oxidized SQDG might even serve as markers for further abiotic stress factors.


Asunto(s)
Galactolípidos , Lactuca , Espectrometría de Masas en Tándem , Glucolípidos , Ácidos Grasos/análisis , Lípidos de la Membrana , Plantas
3.
Pharmaceutics ; 14(11)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36365086

RESUMEN

Selenium (Se) is an essential trace nutrient for humans and animals owing to its role in redox regulation, thyroid hormone control factors, immunity, inflammatory reactions, brain activities, and carbohydrate regulation. It is also important to support muscle development, as well as for reproductive and cardiovascular well-being. Furthermore, sulfur is known to be a healing element, due to the remarkable function of specialized and secondary S-containing compounds. The scope of the current study was to determine the impact of Se and S enrichment on the secondary metabolite accumulation and antibacterial and NO inhibition activities in green and red leaf lettuce (V1 and V2, respectively). The plants were grown in a hydroponic system supplied with different S concentrations (S0: 0, S1: 1 mM and S2: 1.5 mM K2SO4) via the nutrient solution and foliar-applied varying levels of Se (0, 0.2 and 2.6 µM). Electrospray ionization-quadrupole time-of-flight mass spectrometry (ESI-QTOF/MS) combined with ultra-performance liquid chromatography (UPLC) was used to identify the secondary metabolites in green and red lettuce. The results indicated that extracts of the biofortified lettuce were not cytotoxic to Vero kidney cells at the highest concentration tested of 1 mg/mL. The ESI/MS of the tentatively identified metabolites showed that the response values of 5-O-caffeoylquinic acid, cyanidin 3-O-galactoside, quercetin 3-O-(6''-acetyl-glucoside) and quercetin 3-O-malonylglucoside were induced synergistically under higher Se and S levels in red lettuce plants. The acetone extract of red lettuce had antibacterial activity against Pseudomonas aeruginosa, with a minimum inhibitory concentration (MIC) of 0.156 and 0.625 µg/mL under S2/Se1 and S2/Se2 treatments, respectively. As with antibacterial activity, the acetone extract of green (V1) lettuce treated with adequate (S1) and higher S (S2) under Se-limiting conditions showed the ability to inhibit nitric oxide (NO) release from macrophages. NO production by macrophages was inhibited by 50% at respective concentrations of 106.1 ± 2.4 and 101.0 ± 0.6 µg/mL with no toxic effect on the cells, in response to S1 and S2, respectively, under Se-deficient conditions (Se0). Furthermore, the red cultivar (V2) exhibited the same effect as the green cultivar (V1) regarding NO inhibition, with IC50 = 113.0 ± 4.2 µg/mL, in response to S1/Se2 treatments. Collectively, the promising NO inhibitory effect and antibacterial activity of red lettuce under the above-mentioned conditions might be attributed to the production of flavonoid glycosides and phenylpropanoic acid esters under the same condition. To the best of our knowledge, this is the first report to show the novel approach of the NO inhibitory effect of Se and S enrichment in food crops, as an indicator for the potential of Se and S as natural anti-inflammatory agents.

4.
Plants (Basel) ; 11(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36297770

RESUMEN

Oilseed rape (Brassica napus L.) is one of the most important oilseed crops. It has relatively high boron (B) requirements for growth. In this study, a hydroponic experiment was performed to determine the critical B requirement and B distribution in B. napus. The plants were grown for four weeks at a range of B levels (from 0.25 to 1000 µM) supplied in a nutrient solution. The results showed significant differences in the root and shoot dry matter and B accumulation in these tissues among the supplied B levels. Severe visible symptoms of B deficiency were observed on the leaves at levels lower than 1 µM B and toxicity at 1000 µM B in the nutrient solution. The maximum shoot and root dry matter were recorded at 25 µM B in the nutrient solution. The plants supplied with the lowest and the highest B levels produced 35% and 37% less shoot dry matter than those supplied with 25 µM B, while the corresponding decreases in the root dry matter were 48% and 36%, respectively. The critical concentration of B, which is the lowest concentration at which plants produce 90% of the maximum shoot dry matter, was proven to be 1 µM B for oilseed rape. At this level of external B supply, the B concentration in the shoot was 26.9 mg kg-1 DM. It was found that with the increase in B levels in the nutrient solution, the relative distribution of B between the roots and the shoots shifted in favor of the shoots.

5.
Plant Methods ; 18(1): 72, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35644610

RESUMEN

BACKGROUND: Leaf hydration is controlled by feedback mechanisms, e.g. stomatal responses, adjustments of osmotic potential and hydraulic conductivity. Leaf water content thus is an input into related feedback-loops controlling the balance of water uptake and loss. Apoplastic alkalisation upon leaf dehydration is hypothesized to be involved together and in interaction with abscisic acid (ABA) in water stress related signaling on tissue level. However, important questions are still unresolved, e.g. the mechanisms leading to pH changes and the exact nature of its interaction with ABA. When studying these mechanisms and their intermediate signaling steps, an experimenter has only poor means to actually control the central experimental variable, leaf water content (LWC), because it is not only dependent on external variables (e.g. air humidity), which are under experimental control, but is also governed by the biological influences controlling transpiration and water uptake. Those are often unknown in their magnitude, unpredictable and fluctuating throughout an experiment and will prevent true repetitions of an experiment. The goal of the method presented here is to experimentally control and manipulate leaf water content (LWC) of attached intact leaves enclosed in a cuvette while simultaneously measuring physiological parameters like, in this case, apoplastic pH. RESULTS: An experimental setup was developed where LWC is measured by a sensor based on IR-transmission and its signal processed to control a pump which circulates air from the cuvette through a cold trap. Hereby a feedback-loop is formed, which by adjusting vapour pressure deficit (VPD) and consequently leaf transpiration can precisely control LWC. This technique is demonstrated here in a combination with microscopic fluorescence imaging of apoplastic pH (pHapo) as indicated by the excitation ratio of the pH sensitive dye OregonGreen. Initial results indicate that pHapo of the adaxial epidermis of Vicia faba is linearly related to reductions in LWC. CONCLUSIONS: Using this setup, constant LWC levels, step changes or ramps can be experimentally applied while simultaneously measuring physiological responses. The example experiments demonstrate that bringing LWC under experimental control in this way allows better controlled and more repeatable experiments to probe quantitative relationships between LWC and signaling and regulatory processes.

6.
Plants (Basel) ; 11(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35631767

RESUMEN

Alterations of chloroplast membrane lipids might serve as indicators of eco-physiologically induced and plant nutrition-induced changes during plant growth. The change in the degree of fatty acid saturation in the membranes is in particular a strategy of plants to adapt to abiotic stress conditions. Green multi-leaf lettuce plants (Lactuca sativa L.) were subjected to three different sulfur (S) levels. Sulfoquinovosyl diacylglycerol derivatives (SQDG) might be affected by S nutrition. Therefore, the present study was conducted to investigate the impact of S fertilization on the content and composition of individual SQDG. In addition to a change in the SQDG composition, a general change in the total lipid composition of the chloroplast membrane was observed. A significant increase in total SQDG content and doubling of the galactolipid content and significant alterations of individual SQDG were observed at elevated levels of S fertilization. High levels of S supply demonstrated a clear trend of increasing total chloroplast lipid content and concentrations of linolenic acid, in addition to a further decline in palmitic acid. The study opens perspectives on S supply and its crucial role in the build-up of photosynthetic apparatus. Moreover, it emphasizes the role of S-containing compounds, including sulfolipids, in modulating physiological adjustment mechanisms to improve tolerance ability to various abiotic stresses in plants and, consequently, plant food quality.

7.
Plants (Basel) ; 11(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35406907

RESUMEN

This study investigated the beneficial effects of selenium (Se) and sulfur (S) enrichment on the primary metabolism in butterhead lettuce. The plants were treated with three levels of Se via foliar application in the presence of two S levels in the nutrient solution under greenhouse conditions. The lettuce plants that were exposed to the lower selenate level (1.3 µM) in combination with the adequate and high S supplies (1 and 2 mM, respectively) accumulated 38.25 ± 0.38 µg Se g-1 DM and 47.98 ± 0.68 µg Se g-1 DM, respectively. However, a dramatic increase in the Se concentration (122.38 ± 5.07 µg Se g-1 DM, and 146.71 ± 5.43 µg Se g-1 DM, respectively) was observed in the lettuce heads that were exposed to the higher selenate foliar application (3.8 µM) in response to the varied sulfate concentrations (S1 and S2, respectively). Under higher Se and S supplies in the lettuce plants, the levels of organic acids, including malic acid and citric acid, decreased therein to 25.7 ± 0.5 and 3.9 ± 0.3 mg g-1 DM, respectively, whereas, in the plants that were subjected to adequate S and lower Se fertilization, the malic acid, and citric acid levels significantly increased to 47.3 ± 0.4 and 11.8 ± 0.4 mg g-1 DM, respectively. The two Se levels (1.3 and 3.8 µM) under the S1 conditions also showed higher concentrations of water-soluble sugars, including glucose and fructose (70.8.4 ± 1.1 and 115.0 ± 2.1 mg g-1 DM; and 109.4 ± 2.1 and 161.1 ± 1.0 mg g-1 DM, respectively), compared to the control. As with the glucose and fructose, the amino acids (Asn, Glu, and Gln) exhibited strikingly higher levels (48.7 ± 1.1 µmol g-1 DM) under higher S and Se conditions. The results presented in this report reveal that the "crosstalk" between Se and S exhibited a unique synergistic effect on the responses to the amino acids and the soluble sugar biosynthesis under Se and S enrichment. Additionally, the Se-and-S crosstalk could have an important implication on the final nutritional value and quality of lettuce plants.

8.
Plant Sci ; 319: 111253, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487662

RESUMEN

The mechanisms by which plants respond to alkali salt stress are still obscure, and the relevance of alkaline pH under combined alkali salt stress. Early stress responses can indicate mechanisms leading to damage and plant resistance. The apoplast contains essential determinants for plant growth, specifically early apoplastic pH fluctuations are induced by many stressors and hypothesized to be involved in stress signalling. Hence, this study aims to identify fast responses specific to alkaline pH and alkali salt stress by exposing the root of hydroponically grown Vicia faba L. plants to 150 min of either 50 mM NaHCO3 (pH 9) treatment or alkaline pH 9 alone. Apoplastic pH was monitored in real-time by ratiometric fluorescence microscopy simultaneously with SWIR transmission-based measurements of leaf water content (LWC). Moreover, we examined the effect of these stresses on apoplastic, symplastic and xylem ion and metabolite composition together with transcriptions of certain stress-responsive genes. Physiological and transcriptional changes were observed in response to NaHCO3 but not to alkaline pH alone. NaHCO3 elicited a transient reduction in LWC, followed by a transient alkalinization of the apoplast and stomatal closure. Simultaneously, organic acids and sugars accumulated. Fast upregulation of stress-responsive genes showed the significance of gene regulation for early plant adaptation to alkali salt stress.


Asunto(s)
Vicia faba , Álcalis/análisis , Álcalis/metabolismo , Álcalis/farmacología , Concentración de Iones de Hidrógeno , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Estrés Salino , Vicia faba/genética , Agua/metabolismo
9.
Sci Total Environ ; 798: 149249, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329936

RESUMEN

Although lithium (Li) is not an essential nutrient for humans, low Li intakes are associated with increased suicide and homicide rates, aggressive behaviors, unipolar/bipolar disorders, acute mania, etc. On the other hand, Li is one of the most effective psychopharmacological agents used for the treatment of these psycho-behavioral disorders. The beneficial normothymic effect of Li could be achieved at lower doses, therefore, modern psychiatry has called to consider Li biofortification of foods to improve its dietary intake. The concept of agronomic biofortification of crops with Li is juvenile and there exist a limited number of studies, mainly focused on vegetables or mushrooms. This review, first of its kind, discusses the nutritional beneficence and dietary intake of Li, its biogeochemistry, and opportunities and challenges in the Li biofortification of food crops. Literature showed that dietary intake of Li in many countries of the world is insufficient, compared to the provisional recommended dietary allowance (RDA) of 1.0 mg day-1 for a 70 kg adult. Lithium contents of soils are widely variable and the metal has high mobility in soils, making it more prone to leaching, and available for plant uptake. Biofortification studies reveal that plants can accumulate significant quantities of Li in their edible tissues without yield loss and quality associated negative effects. At lower application rates, Li tissue concentration could reach to the level that consuming 100-200 g of Li-biofortified fresh vegetables or mushrooms could support its RDA. It seems impossible to enrich the plants with Li to the levels that allow their application in psychiatric treatments, which requires the dosage of 600-1200 mg day-1. However, there is need to refine the methods of Li biofortification strategies to obtains plant specific concentration of Li in edible parts so that consuming a specific amount could provide the proposed dietary intake requirement.


Asunto(s)
Agaricales , Biofortificación , Beneficencia , Ingestión de Alimentos , Humanos , Litio , Verduras
10.
Pharmaceutics ; 13(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068285

RESUMEN

The main objective of the present study was to assess the effects of sulfur (S) nutrition on plant growth, overall quality, secondary metabolites, and antibacterial and radical scavenging activities of hydroponically grown lettuce cultivars. Three lettuce cultivars, namely, Pazmanea RZ (green butterhead, V1), Hawking RZ (green multi-leaf lettuce, V2), and Barlach RZ (red multi-leaf, V3) were subjected to two S-treatments in the form of magnesium sulfate (+S) or magnesium chloride (-S). Significant differences were observed under -S treatments, especially among V1 and V2 lettuce cultivars. These responses were reflected in the yield, levels of macro- and micro-nutrients, water-soluble sugars, and free inorganic anions. In comparison with the green cultivars (V1 and V2), the red-V3 cultivar revealed a greater acclimation to S starvation, as evidenced by relative higher plant growth. In contrast, the green cultivars showed higher capabilities in production and superior quality attributes under +S condition. As for secondary metabolites, sixteen compounds (e.g., sesquiterpene lactones, caffeoyl derivatives, caffeic acid hexose, 5-caffeoylquinic acid (5-OCQA), quercetin and luteolin glucoside derivatives) were annotated in all three cultivars with the aid of HPLC-DAD-MS-based untargeted metabolomics. Sesquiterpene lactone lactucin and anthocyanin cyanidin 3-O-galactoside were only detected in V1 and V3 cultivars, respectively. Based on the analyses, the V3 cultivar was the most potent radical scavenger, while V1 and V2 cultivars exhibited antibacterial activity against Staphylococcus aureus in response to S provision. Our study emphasizes the critical role of S nutrition in plant growth, acclimation, and nutritional quality. The judicious-S application can be adopted as a promising antimicrobial prototype for medical applications.

11.
Plants (Basel) ; 10(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925851

RESUMEN

Oilseed rape (Brassica napus L.) is a high-boron (B)-demanding crop, and initially, normal growing plants might show B deficiency at advanced growth stages on soils with marginal B availability. Hence, we compared the effects of B resupply via roots and leaves on growth and physiological response, and relative expression of B transporters in B-deficient oilseed rape plants. Four-week-old plants initially grown with inadequate B (1 µM B for the first two weeks and 0.25 µM B for the next two weeks) were later grown either as such with 0.25 µM B, with 25 µM B in nutrient solution or foliar sprayed with 7 mL of 30, 60 and 150 mM B solution plant-1 as boric acid. Plants grown with 25 µM B in the nutrient solution from the beginning were included as adequate B treatment. Results showed that B resupply to B-deficient plants via roots and leaves (60 mM B) equally improved root and shoot dry matter, but not to the level of plants grown with adequate B supply. Foliar-applied 150 mM B proved toxic, causing leaf burn but not affecting dry matter. Resupply of B via roots increased B concentration in roots and leaves, while leaf-applied B did so only in leaves. Net carbon assimilation had a positive relationship with dry matter accumulation. Except for the highest foliar B level, B resupply via roots and leaves increased the accumulation of glucose, fructose and sucrose in leaves. Boron-deficient plants showed significant upregulation of BnaNIP5;1 in leaves and roots and of BnaBOR1;2 in roots. Boron resupply via roots reversed the B-deficiency-induced upregulation of BnaNIP5;1 in roots, whereas the expression of BnaBOR1;2 was reversed by both root and foliar B resupply. In leaves, B resupply by both methods reversed the expression of BnaNIP5;1 to the level of B-adequate plants. It is concluded that B resupply to B-deficient plants via roots and leaves equally but partially corrected B deficiency in B. napus grown in hydroponics.

12.
Plant Physiol Biochem ; 161: 156-165, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33609922

RESUMEN

Ammonium (NH4+) and nitrate (NO3-) conversely alter pH of the rooting medium, and thus differentially affect the equilibrium between boric acid and borate in soil solution. This can alter boron (B) uptake by plants, which is passive under high, but facilitated (boric acid) or active (borate) under low B supply. Therefore, the effect of NH4+ and NO3- forms was investigated on the growth, 10B uptake rate and accumulation, and expression of B transporters in Brassica napus grown with low (1 µM) or high (100 µM) 10B for five days in the nutrient solution. At the low 10B level, NO3--fed plants had the same specific 10B uptake rate, 10B accumulation and xylem 10B concentration as NH4NO3-fed plants but these attributes were reduced at the high 10B level. BnaBOR1;2 and BnaNIP5;1 were upregulated in roots of NO3-fed plants at low 10B supply. NH4+-fed plants had substantially lower dry matters; due to nutrient solution acidification (2.0 units)-induced deficiency of nitrogen, potassium, magnesium, and iron in plant shoots. Reduced transpiration rates resulted in lower 10B uptake rate and accumulation in the roots and shoots of NH4+-fed plants. BnaNIP5;1 in roots, while both BnaBOR1;2 and BnaNIP5;1 in shoots were upregulated in NH4+-fed plants at low 10B level. Collectively, NH4+-induced acidity and consequent lowering of 10B uptake induced the upregulation of B transport mechanisms, even at marginal 10B concentrations, while NO3--induced alkalinization resulted in altered B distribution between roots and shoots due to restricted B transport, especially at higher 10B supply.


Asunto(s)
Compuestos de Amonio , Brassica napus , Boro , Nitratos , Nitrógeno , Raíces de Plantas , Brotes de la Planta
13.
Physiol Plant ; 172(1): 146-161, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33314239

RESUMEN

Abscisic acid (ABA) priming is known to enhance plant growth and survival under salinity. However, the mechanisms mediating this long-term acclimatization to salt stress are still obscure. Specifically, the long-term transcriptional changes and their effects on ion relations were never investigated. This motivated us to study the long-term (8 days) effect of one-time 24 h root priming treatment with 10 µM ABA on transcription levels of relevant regulated key genes, osmotically relevant metabolites, and ionic concentrations in Vicia faba grown under 50 mM NaCl salinity. The novelty of this study is that we could demonstrate long-term effects of a one-time ABA application. ABA-priming was found to prevent the salt-induced decline in root and shoot dry matter, improved photosynthesis, and inhibited terminal wilting of plants. It substantially increased the mRNA level of AAPK and 14-3-3 ABA inducible kinases and ion transporters (PM H+ -ATPase, VFK1, KUP7, SOS1, and CLC1). These ABA-induced transcriptional changes went along with altered tissue ion patterns. Primed plants accumulated less Na+ and Cl- but more K+ , Ca2+ , Zn2+ , Fe2+ , Mn2+ , NO3 - , and SO4 2- . Priming changed the composition pattern of organic osmolytes under salinity, with glucose and fructose being dominant in unprimed, whereas sucrose was dominant in the primed plants. We conclude that one-time ABA priming mitigates salt stress in Vicia faba by persistently changing transcription patterns of key genes, stabilizing the ionic and osmotic balance, and improving photosynthesis and growth.


Asunto(s)
Ácido Abscísico , Vicia faba , Iones , Salinidad , Estrés Salino , Vicia faba/genética
14.
Molecules ; 25(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33322081

RESUMEN

Selenium (Se) is an essential trace element, which represents an integral part of glutathione peroxidase and other selenoproteins involved in the protection of cells against oxidative damage. Selenomethionine (SeMet), selenocysteine (SeCys), and methylselenocysteine (MeSeCys) are the forms of Se that occur in living systems. Se-containing compounds have been found to reduce carcinogenesis of animal models, and dietary supplemental Se might decrease cancer risk. Se is mainly taken up by plant roots in the form of selenate via high-affinity sulfate transporters. Consequently, owing to the chemical similarity between Se and sulfur (S), the availability of S plays a key role in Se accumulation owing to competition effects in absorption, translocation, and assimilation. Moreover, naturally occurring S-containing compounds have proven to exhibit anticancer potential, in addition to other bioactivities. Therefore, it is important to understand the interaction between Se and S, which depends on Se/S ratio in the plant or/and in the growth medium. Brassicaceae (also known as cabbage or mustard family) is an important family of flowering plants that are grown worldwide and have a vital role in agriculture and populations' health. In this review we discuss the distribution and further interactions between S and Se in Brassicaceae and provide several examples of Se or Se/S biofortifications' experiments in brassica vegetables that induced the chemopreventive effects of these crops by enhancing the production of Se- or/and S-containing natural compounds. Extensive further research is required to understand Se/S uptake, translocation, and assimilation and to investigate their potential role in producing anticancer drugs.


Asunto(s)
Anticarcinógenos/química , Anticarcinógenos/farmacología , Brassicaceae/química , Quimioprevención , Extractos Vegetales/química , Extractos Vegetales/farmacología , Selenio/química , Azufre/química , Animales , Humanos , Compuestos de Selenio/química , Compuestos de Selenio/farmacología , Relación Estructura-Actividad , Compuestos de Azufre/química , Compuestos de Azufre/farmacología , Verduras
15.
J Agric Food Chem ; 67(46): 12709-12719, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31697495

RESUMEN

The major components of wheat storage proteins are gliadins and glutenins, and as they contribute differently to baking quality, a balanced mixture of these components is essential. The application of foliar nitrogen (N) at anthesis is a common practice to improve protein concentration and composition. The aim of this study was to investigate the effects of a foliar N application at anthesis on storage protein gene expression during grain development and on the distribution of protein concentration and protein body size within the grain. In this experiment, an additional N application at anthesis stimulated the expression of genes of the majority of storage proteins when the N supply was low. Furthermore, it led to higher protein concentrations in the subaleurone layers, while in the center of the lobes, the protein concentrations were decreased. These changes will affect the protein recovery in white flours, as proportionally more protein might be lost during milling processes.


Asunto(s)
Fertilizantes/análisis , Nitrógeno/farmacología , Proteínas de Plantas/genética , Triticum/efectos de los fármacos , Harina/análisis , Proteínas de Granos/metabolismo , Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo
16.
Plant Sci ; 289: 110249, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31623782

RESUMEN

The main objective of the present study was to characterize the symbiotic N2 fixation (SNF) capacity and to elucidate the underlying mechanisms for low-Pi acclimation in soybean plants grown in association with two Bradyrhizobium diazoefficiens strains which differ in SNF capacity (USDA110 vs. CB1809). In comparison with the USDA110-soybean, the CB1809-soybean association revealed a greater SNF capacity in response to Pi starvation, as evidenced by relative higher plant growth and higher expression levels of the nifHDK genes. This enhanced Pi acclimation was partially related to the efficient utilization to the overall carbon (C) budget of symbiosis in the CB1809-induced nodules compared with that of the USDA110-induced nodules under low-Pi provision. In contrast, the USDA110-induced nodules favored other metabolic acclimation mechanisms that expend substantial C cost, and consequently cause negative implications on nodule C expenditure during low-Pi conditions. Fatty acids, phytosterols and secondary metabolites are characterized among the metabolic pathways involved in nodule acclimation under Pi starvation. While USDA110-soybean association performed better under Pi sufficiency, it is very likely that the CB1809-soybean association is better acclimatized to cope with Pi deficiency owing to the more effective functional plasticity and lower C cost associated with these nodular metabolic arrangements.


Asunto(s)
Bradyrhizobium/fisiología , Glycine max/metabolismo , Fijación del Nitrógeno , Fosfatos/deficiencia , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis , Nódulos de las Raíces de las Plantas/microbiología , Glycine max/microbiología
17.
Front Plant Sci ; 9: 1334, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30374359

RESUMEN

The mechanisms of aluminum (Al) resistance in wheat and rye involve the release of citrate and malate anions from the root apices. Many of the genes controlling these processes have been identified and their responses to Al treatment described in detail. This study investigated how the major Al resistance traits of wheat and rye are transferred to triticale (x Tritosecale Wittmack) which is a hybrid between wheat and rye. We generated octoploid and hexaploid triticale lines and compared them with the parental lines for their relative resistance to Al, organic anion efflux and expression of some of the genes encoding the transporters involved. We report that the strong Al resistance of rye was incompletely transferred to octoploid and hexaploid triticale. The wheat and rye parents contributed to the Al-resistance of octoploid triticale but the phenotypes were not additive. The Al resistance genes of hexaploid wheat, TaALMT1, and TaMATE1B, were more successfully expressed in octoploid triticale than the Al resistance genes in rye tested, ScALMT1 and ScFRDL2. This study demonstrates that an important stress-tolerance trait derived from hexaploid wheat was expressed in octoploid triticale. Since most commercial triticale lines are largely hexaploid types it would be beneficial to develop techniques to generate genetically-stable octoploid triticale material. This would enable other useful traits that are present in hexaploid but not tetraploid wheat, to be transferred to triticale.

18.
J Plant Physiol ; 179: 133, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26120613
19.
Plant Physiol Biochem ; 92: 19-29, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25900421

RESUMEN

Salt stress impairs global agricultural crop production by reducing vegetative growth and yield. Despite this importance, a number of gaps exist in our knowledge about very early metabolic responses that ensue minutes after plants experience salt stress. Surprisingly, this early phase remains almost as a black box. Therefore, systematic studies focussing on very early plant physiological responses to salt stress (in this case NaCl) may enhance our understanding on strategies to develop crop plants with a better performance under saline conditions. In the present study, hydroponically grown Vicia faba L. plants were exposed to 90 min of NaCl stress, whereby every 15 min samples were taken for analyzing short-term physiologic responses. Gas chromatography-mass spectrometry-based metabolite profiles were analysed by calculating a principal component analysis followed by multiple contrast tests. Follow-up experiments were run to analyze downstream effects of the metabolic changes on the physiological level. The novelty of this study is the demonstration of complex stress-induced metabolic changes at the very beginning of a moderate salt stress in V. faba, information that are very scant for this early stage. This study reports for the first that the proline analogue trans-4-hydroxy-L-proline, known to inhibit cell elongation, was increasingly synthesized after NaCl-stress initiation. Leaf metabolites associated with the generation or scavenging of reactive oxygen species (ROS) were affected in leaves that showed a synchronized increase in ROS formation. A reduced glutamine synthetase activity indicated that disturbances in the nitrogen assimilation occur earlier than it was previously thought under salt stress.


Asunto(s)
Nitrógeno/metabolismo , Prolina/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal , Cloruro de Sodio/metabolismo , Estrés Fisiológico , Vicia faba/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Glutamina/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Prolina/análogos & derivados
20.
PLoS One ; 10(3): e0118406, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25760715

RESUMEN

As a result of salt (NaCl)-stress, sensitive varieties of maize (Zea mays L.) respond with a strong inhibition of organ growth. The reduction of leaf elongation investigated here has several causes, including a modification of the mechanical properties of the cell wall. Among the various tissues that form the leaf, the epidermis plays a special role in controlling organ growth, because it is thought to form a rigid outer leaf coat that can restrict elongation by interacting with the inner cell layers. This study was designed to determine whether growth-related changes in the leaf epidermis and its cell wall correspond to the overall reduction in cell expansion of maize leaves during an osmotic stress-phase induced by salt treatment. Two different maize varieties contrasting in their degree of salt resistance (i.e., the hybrids Lector vs. SR03) were compared in order to identify physiological features contributing to resistance towards salinity. Wall loosening-related parameters, such as the capacity of the epidermal cell wall to expand, ß-expansin abundance and apoplastic pH values, were analysed. Our data demonstrate that, in the salt-tolerant maize hybrid which maintained leaf growth under salinity, the epidermal cell wall was more extensible under salt stress. This was associated with a shift of the epidermal apoplastic pH into a range more favourable for acid growth. The more sensitive hybrid that displayed a pronounced leaf growth-reduction was shown to have stiffer epidermal cell walls under stress. This may be attributable to the reduced abundance of cell wall-loosening ß-expansin proteins following a high salinity-treatment in the nutrient solution (100 mM NaCl, 8 days). This study clearly documents that salt stress impairs epidermal wall-loosening in growth-reduced maize leaves.


Asunto(s)
Pared Celular/fisiología , Epidermis de la Planta/citología , Hojas de la Planta/citología , Cloruro de Sodio/metabolismo , Zea mays/citología , Tamaño de la Célula , Elasticidad , Concentración de Iones de Hidrógeno , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Salinidad , Tolerancia a la Sal , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...